
dns server
Paul Cobbaut

dns server
Paul Cobbaut

lt-1.9

Published Wed 05 Dec 2012 05:25:38 PM CET

Abstract

Dit boek wordt gebruikt als beknopte handleiding voor de opleiding "bachelor informatica" (HBO5 Informatica)
in avondschool. Dit boek bevat niet alle leerstof, vergeet niet om zelf te noteren.

Meer informatie en een gratis .pdf is beschikbaar op http://linux-training.be .

Feel free to contact the authors:

• Paul Cobbaut: paul.cobbaut@gmail.com, http://www.linkedin.com/in/cobbaut

Contributors to the Linux Training project are:

• Serge van Ginderachter: serge@ginsys.be, build scripts; infrastructure setup; minor stuff

• Hendrik De Vloed: hendrik.devloed@ugent.be, buildheader.pl script

Copyright 2007-2012 Paul Cobbaut

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled 'GNU Free Documentation License'.

iii

Table of Contents
1. introduction to DNS .. 1

1.1. about dns .. 2
1.2. dns namespace ... 4
1.3. caching only servers .. 9
1.4. authoritative dns servers .. 11
1.5. primary and secondary ... 11
1.6. zone transfers ... 11
1.7. master and slave .. 12
1.8. SOA record .. 12
1.9. full or incremental zone transfers .. 13
1.10. DNS cache ... 14
1.11. forward lookup zone example .. 15
1.12. Practice: caching only DNS server .. 16
1.13. Practice: caching only with forwarder ... 19
1.14. Practice: primary authoritative server .. 21
1.15. Practice: reverse DNS .. 23
1.16. Practice: a DNS slave server ... 24

2. advanced DNS ... 25
2.1. DNS round robin ... 26
2.2. DNS delegation .. 27
2.3. DNS load balancing ... 28
2.4. DNS notify ... 28
2.5. testing IXFR and AXFR .. 28
2.6. DDNS integration with DHCP .. 28
2.7. reverse is forward in-addr.arpa .. 29
2.8. ipv6 .. 29
2.9. split-horizon dns ... 29
2.10. DNS security : file corruption .. 29
2.11. DNS security : zone transfers .. 29
2.12. DNS security : zone transfers, ip spoofing .. 30
2.13. DNS security : queries ... 30
2.14. DNS security : chrooted bind .. 30
2.15. DNS security : DNSSEC ... 30
2.16. DNS security : root .. 31

Index .. 32

iv

List of Tables
1.1. the first top level domains ... 6
1.2. new general purpose tld's .. 6

1

Chapter 1. introduction to DNS

Table of Contents
1.1. about dns .. 2
1.2. dns namespace ... 4
1.3. caching only servers .. 9
1.4. authoritative dns servers .. 11
1.5. primary and secondary ... 11
1.6. zone transfers ... 11
1.7. master and slave .. 12
1.8. SOA record .. 12
1.9. full or incremental zone transfers .. 13
1.10. DNS cache ... 14
1.11. forward lookup zone example ... 15
1.12. Practice: caching only DNS server .. 16
1.13. Practice: caching only with forwarder ... 19
1.14. Practice: primary authoritative server .. 21
1.15. Practice: reverse DNS .. 23
1.16. Practice: a DNS slave server ... 24

Every computer on the internet is connected to a huge worldwide tree of dns servers.
Most organisations have more than one dns server, and even Personal Area Networks
have a built-in dns server in a small modem or router.

In this chapter we will explain what dns actually is and how to set it up using Linux.

introduction to DNS

2

1.1. about dns

1.1.1. name to ip-address resolution

The domain name system or dns is a service on a tcp/ip network that enables clients
to translate names into ip-addresses. It is much more than that, but let's keep it simple
for now.

When you use a browser to go to a website, then you type the name of that website
in the url bar. But for your computer to actually communicate with the web server
hosting said website, your computer needs the ip-address of that web server. That is
where dns comes in.

In wireshark you can use the dns filter to see this traffic.

1.1.2. history

In the Seventies, only a few hundred computers were connected to the internet. To
resolve names, computers had a flat file that contained a table to resolve hostnames
to ip-addresses. This local file was downloaded from hosts.txt on an ftp server in
Stanford.

In 1984 Paul Mockapetris created dns, a distributed treelike hierarchical database
that will be explained in detail in these chapters.

Today, dns or domain name system is a worldwide distributed hierarchical database
controlled by ICANN. Its primary function is to resolve names to ip addresses, and
to point to internet servers providing smtp or ldap services.

The old hosts.txt file is still active today on most computer systems under the name
/etc/hosts. We will discuss this file later, as it can influence name resolution.

introduction to DNS

3

1.1.3. forward and reverse lookup queries

The question a client asks a dns server is called a query. When a client queries for an
ip-address, this is called a forward lookup query (as seen in the previous drawing).

The reverse, a query for the name of a host, is called a reverse lookup query.

Below a picture of a reverse lookup query.

Here is a screenshot of a reverse lookup query in nslookup.

paul@ubu1010:~$ nslookup
> set type=PTR
> 178.63.30.100
Server: 212.71.8.10
Address: 212.71.8.10#53

Non-authoritative answer:
100.30.63.178.in-addr.arpa name = antares.ginsys.net.

This is what a reverse lookup looks like when sniffing with wireshark.

1.1.4. /etc/resolv.conf

A client computer needs to know the ip-address of the dns server to be able to send
queries to it. This is either provided by a dhcp server or manually entered.

Linux clients keep this information in the /etc/resolv.conf file.

paul@ubu1010:~$ cat /etc/resolv.conf
nameserver 212.71.8.10

introduction to DNS

4

1.2. dns namespace

1.2.1. hierarchy

The dns namespace is hierarchical tree structure, with the root servers (aka dot-
servers) at the top. The root servers are usually represented by a dot.

Below the root-servers are the Top Level Domains or tld's.

There are more tld's than shown in the picture. Currently about 200 countries have a
tld. And there are several general tld's like .com, .edu, .org, .gov, .net, .mil, .int and
more recently also .aero, .info, .museum, ...

1.2.2. root servers

There are thirteen root servers on the internet, they are named A to M. Journalists
often refer to these servers as the master servers of the internet, because if these
servers go down, then nobody can (use names to) connect to websites.

The root servers are not thirteen physical machines, they are many more. For example
the F root server consists of 46 physical machines that all behave as one (using
anycast).

http://root-servers.org
http://f.root-servers.org
http://en.wikipedia.org/wiki/Root_nameserver.

introduction to DNS

5

1.2.3. root hints

Every dns server software will come with a list of root hints to locate the root
servers.

root@gwen:~# grep ' A ' /etc/bind/db.root
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
L.ROOT-SERVERS.NET. 3600000 A 199.7.83.42
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33

1.2.4. domains

One level below the top level domains are the domains. Domains can have
subdomains (also called child domains).

This picture shows dns domains like google.com, chess.com, linux-training.be (there
are millions more).

DNS domains are registered at the tld servers, the tld servers are registered at the
dot servers.

introduction to DNS

6

1.2.5. top level domains

Below the root level are the top level domains or tld's. Originally there were only
seven defined:

Table 1.1. the first top level domains

year TLD purpose

1985 .arpa Reverse lookup via in-addr.arpa

1985 .com Commercial Organizations

1985 .edu US Educational Institutions

1985 .gov US Government Institutions

1985 .mil US Military

1985 .net Internet Service Providers, Internet Infrastructure

1985 .org Non profit Organizations

1988 .int International Treaties like nato.int

Country tld's were defined for individual countries, like .uk in 1985 for Great Britain
(yes really), .be for Belgium in 1988 and .fr for France in 1986. See RFC 1591 for
more info.

In 1998 seven new general purpose tld's where chosen, they became active in the
21st century.

Table 1.2. new general purpose tld's

year TLD purpose

2002 .aero aviation related

2001 .biz businesses

2001 .coop for co-operatives

2001 .info informative internet resources

2001 .museum for museums

2001 .name for all kinds of names, pseudonyms and labels...

2004 .pro for professionals

Many people were surprised by the choices, claiming not much use for them and
wanting a separate .xxx domain (introduced in 2011) for adult content, and .kidz a
save haven for children. In the meantime more useless tld's were create like .travel
(for travel agents) and .tel (for internet communications) and .jobs (for jobs sites).

introduction to DNS

7

1.2.6. fully qualified domain name

The fully qualified domain name or fqdn is the combination of the hostname of a
machine appended with its domain name.

If for example a system is called gwen and it is in the domain linux-training.be, then
the fqdn of this system is gwen.linux-training.be.

On Linux systems you can use the hostname and domainname commands to verify
this information.

root@gwen:~# hostname
gwen
root@gwen:~# domainname
linux-training.be
root@gwen:~# hostname --fqdn
gwen.linux-training.be

1.2.7. dns zones

A zone (aka a zone of authority) is a portion of the DNS tree that covers one domain
name or child domain name. The picture below represents zones as blue ovals. Some
zones will contain delegate authority over a child domain to another zone.

A dns server can be authoritative over 0, 1 or more dns zones. We will see more
details later on the relation between a dns server and a dns zone.

A dns zone consists of records, also called resource records. We will list some of
those resource records on the next page.

introduction to DNS

8

1.2.8. dns records

A record

The A record, which is also called a host record contains the ipv4-address of a
computer. When a DNS client queries a DNS server for an A record, then the DNS
server will resolve the hostname in the query to an ip-address. An AAAA record is
similar but contains an ipv6 address instead of ipv4.

PTR record

A PTR record is the reverse of an A record. It contains the name of a computer and
can be used to resolve an ip-address to a hostname.

NS record

A NS record or nameserver record is a record that points to a DNS name server
(in this zone). You can list all your name servers for your DNS zone in distinct NS
records.

glue A record

An A record that maps the name of an NS record to an ip address is said to be a glue
record.

SOA record

The SOA record of a zone contains meta information about the zone itself. The
contents of the SOA record is explained in detail in the section about zone transfers.
There is exactly one SOA record for each zone.

CNAME record

A CNAME record maps a hostname to a hostname, creating effectively an alias for
an existing hostname. The name of the mail server is often aliased to mail or smtp,
and the name of a web server to www.

MX record

The MX record points to an smtp server. When you send an email to another domain,
then your mail server will need the MX record of the target domain's mail server.

introduction to DNS

9

1.3. caching only servers
A dns server that is set up without authority over a zone, but that is connected to
other name servers and caches the queries is called a caching only name server.
Caching only name servers do not have a zone database with resource records.
Instead they connect to other name servers and cache that information.

There are two kinds of caching only name servers. Those with a forwarder, and those
that use the root servers.

1.3.1. caching only server with forwarder

A caching only server with a forwarder is a DNS server that will get all its
information from the forwarder. The forwarder must be a dns server for example
the dns server of an internet service provider.

This picture shows a dns server on the company LAN that has set the dns server from
their isp as a forwarder. If the ip address of the isp dns server is 212.71.8.10, then
the following lines would occur in the named.conf file of the company dns server:

forwarders {
 212.71.8.10;
 };

introduction to DNS

10

1.3.2. caching only server without forwarder

A caching only server without forwarder will have to get information elsewhere.
When it receives a query from a client, then it will consult one of the root servers.
The root server will refer it to a tld server, which will refer it to another dns server.
That last server might know the answer to the query, or may refer to yet another
server. In the end, our hard working dns server will find an answer and report this
back to the client.

In the picture below, the clients asks for the ip address of linux-training.be. Our
caching only server will contact the root server, and be refered to the .be server. It will
then contact the .be server and be refered to one of the name servers of Openminds.
One of these name servers (in this cas ns1.openminds.be) will answer the query with
the ip-address of linux-training.be. When our caching only server reports this to the
client, then the client can connect to this website.

1.3.3. iterative or recursive query

A recursive query is a DNS query where the client that is submitting the query
expects a complete answer (Like the fat red arrow above going from the Macbook
to the DNS server). An iterative query is a DNS query where the client does not
expect a complete answer (the three black arrows originating from the DNS server
in the picture above). Iterative queries usually take place between name servers. The
root name servers do not respond to recursive queries.

introduction to DNS

11

1.4. authoritative dns servers
A DNS server that is controlling a zone, is said to be the authoritative DNS server
for that zone. Remember that a zone is a collection of resource records.

1.5. primary and secondary
When you set up the first authoritative dns server for a zone, then this is called the
primary dns server. This server will have a readable and writable copy of the zone
database. For reasons of fault tolerance, performance or load balancing you may
decide to set up another dns server with authority over that zone. This is called a
secondary dns server.

1.6. zone transfers
The slave server receives a copy of the zone database from the master server using a
zone transfer. Zone transfers are requested by the slave servers at regular intervals.
Those intervals are defined in the soa record.

introduction to DNS

12

1.7. master and slave
When adding a secondary dns server to a zone, then you will configure this server as
a slave server to the primary server. The primary server then becomes the master
server of the slave server.

Often the primary dns server is the master server of all slaves. Sometimes a slave
server is master server for a second line slave server. In the picture below ns1 is the
primary dns server and ns2, ns3 and ns4 are secondaries. The master for slaves ns2
and ns3 is ns1, but the master for ns4 is ns2.

1.8. SOA record
The soa record contains a refresh value. If this is set to 30 minutes, then the slave
server will request a copy of the zone file every 30 minutes. There is also a retry
value. The retry value is used when the master server did not reply to the last zone
transfer request. The value for expiry time says how long the slave server will answer
to queries, without receiving a zone update.

Below an example of how to use nslookup to query the soa record of a zone (linux-
training.be).

root@debian6:~# nslookup
> set type=SOA
> server ns1.openminds.be
> linux-training.be
Server: ns1.openminds.be
Address: 195.47.215.14#53

linux-training.be
 origin = ns1.openminds.be
 mail addr = hostmaster.openminds.be
 serial = 2321001133
 refresh = 14400
 retry = 3600
 expire = 604800
 minimum = 3600

Zone transfers only occur when the zone database was updated (meaning when one
or more resource records were added, removed or changed on the master server). The

introduction to DNS

13

slave server will compare the serial number of its own copy of the SOA record with
the serial number of its master's SOA record. When both serial numbers are the same,
then no update is needed (because no records were added, removed or deleted). When
the slave has a lower serial number than its master, then a zone transfer is requested.

Below a zone transfer captured in wireshark.

1.9. full or incremental zone transfers
When a zone tranfer occurs, this can be either a full zone transfer or an incremental
zone transfer. The decision depends on the size of the transfer that is needed to
completely update the zone on the slave server. An incremental zone transfer is
prefered when the total size of changes is smaller than the size of the zone database.
Full zone transfers use the axfr protocol, incremental zone transfer use the ixfr
protocol.

introduction to DNS

14

1.10. DNS cache
DNS is a caching protocol.

When a client queries its local DNS server, and the local DNS server is not
authoritative for the query, then this server will go looking for an authoritative name
server in the DNS tree. The local name server will first query a root server, then a
tld server and then a domain server. When the local name server resolves the query,
then it will relay this information to the client that submitted the query, and it will
also keep a copy of these queries in its cache. So when a(nother) client submits the
same query to this name server, then it will retrieve this information form its cache.

For example, a client queries for the A record on www.linux-training.be to its local
server. This is the first query ever received by this local server. The local server
checks that it is not authoritative for the linux-training.be domain, nor for the .be tld,
and it is also not a root server. So the local server will use the root hints to send an
iterative query to a root server.

The root server will reply with a reference to the server that is authoritative for the .be
domain (root DNS servers do not resolve fqdn's, and root servers do not respond to
recursive queries).

The local server will then sent an iterative query to the authoritative server for the .be
tld. This server will respond with a reference to the name server that is authoritative
for the linux-training.be domain.

The local server will then sent the query for www.linux-training.be to the
authoritative server (or one of its slave servers) for the linux-training.be domain.
When the local server receives the ip-address for www.linux-training.be, then it will
provide this information to the client that submitted this query.

Besides caching the A record for www.linux-training.be, the local server will also
cache the NS and A record for the linux-training.be name server and the .be name
server.

introduction to DNS

15

1.11. forward lookup zone example
The way to set up zones in /etc/named.conf is to create a zone entry with a reference
to another file located in /var/named.

Here is an example of such an entry in /etc/named.conf:

zone "classdemo.local" IN {
 type master;
 file "classdemo.local.zone";
 allow-update { none; };
};

To create the zone file, the easy method is to copy an existing zone file (this is easier
than writing from scratch).

[root@RHEL4b named]# cd /var/named/
[root@RHEL4b named]# pwd
/var/named
[root@RHEL4b named]# cp localhost.zone classdemo.local.zone
[root@RHEL4b named]#

Here is an example of a zone file.

[root@RHEL4b named]# cat classdemo.local.zone
$TTL 86400
$ORIGIN classdemo.local.
@ IN SOA rhel4b.classdemo.local. admin.classdemo.local. (
 2007083100 ; serial
 3H ; refresh
 900 ; retry
 1W ; expiry
 1D) ; minimum

 IN NS rhel4b.classdemo.local.
 IN MX 10 mail.classdemo.local.
 IN A 192.168.1.191

rhel4b IN A 192.168.1.191
mail IN A 192.168.1.191
www IN A 192.168.1.191
ftp IN A 192.168.1.191
server2 IN A 192.168.1.1

introduction to DNS

16

1.12. Practice: caching only DNS server
1a. installing DNS software on Debian/Ubuntu

root@ubu1010srv:~# dpkg -l | grep bind9
ii bind9-host 1:9.7.1.dfsg.P2-2ubuntu0.2 Version of 'host' bun\
dled with BIND 9.X
ii libbind9-60 1:9.7.1.dfsg.P2-2ubuntu0.2 BIND9 Shared Library \
used by BIND
root@ubu1010srv:~# aptitude install bind9
The following NEW packages will be installed:
 bind9 bind9utils{a}
0 packages upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Need to get 433kB of archives. After unpacking 1,352kB will be used.
Do you want to continue? [Y/n/?]

... output truncated ...

 * Starting domain name service... bind9 [OK]

root@ubu1010srv:~# dpkg -l | grep bind9
ii bind9 1:9.7.1.dfsg.P2-2ubuntu0.2 Internet Domain Name Server
ii bind9-host 1:9.7.1.dfsg.P2-2ubuntu0.2 Version of 'host' bundled w\
ith BIND 9.X
ii bind9utils 1:9.7.1.dfsg.P2-2ubuntu0.2 Utilities for BIND
ii libbind9-60 1:9.7.1.dfsg.P2-2ubuntu0.2 BIND9 Shared Library used b\
y BIND
root@ubu1010srv:~#

1b. installing DNS software on RHEL/Fedora

[root@fedora14 ~]# rpm -qa | grep bind
samba-winbind-clients-3.5.8-74.fc14.i686
bind-utils-9.7.3-1.fc14.i686
PackageKit-device-rebind-0.6.12-2.fc14.i686
bind-libs-9.7.3-1.fc14.i686
[root@fedora14 ~]# yum install bind
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package bind.i686 32:9.7.3-1.fc14 set to be installed
--> Finished Dependency Resolution

...output truncated

Running Transaction
 Installing : 32:bind-9.7.3-1.fc14.i686 1/1

Installed:
 bind.i686 32:9.7.3-1.fc14

Complete!
[root@fedora14 ~]# rpm -qa | grep bind
samba-winbind-clients-3.5.8-74.fc14.i686
bind-utils-9.7.3-1.fc14.i686
PackageKit-device-rebind-0.6.12-2.fc14.i686
bind-libs-9.7.3-1.fc14.i686
bind-9.7.3-1.fc14.i686
[root@fedora14 ~]#

2. Discover the default configuration files. Can you define the purpose of each file ?

introduction to DNS

17

2a. On Fedora:

[root@fedora14 ~]# ls -ld /etc/named*
drwxr-x---. 2 root named 4096 Feb 18 16:07 /etc/named
-rw-r-----. 1 root named 1008 Jul 19 2010 /etc/named.conf
-rw-r--r--. 1 root named 2544 Feb 18 16:07 /etc/named.iscdlv.key
-rw-r-----. 1 root named 931 Jun 21 2007 /etc/named.rfc1912.zones
-rw-r--r--. 1 root named 487 Jul 19 2010 /etc/named.root.key
[root@fedora14 ~]# ls -l /var/named/
total 28
drwxrwx---. 2 named named 4096 Feb 18 16:07 data
drwxrwx---. 2 named named 4096 Feb 18 16:07 dynamic
-rw-r-----. 1 root named 1892 Feb 18 2008 named.ca
-rw-r-----. 1 root named 152 Dec 15 2009 named.empty
-rw-r-----. 1 root named 152 Jun 21 2007 named.localhost
-rw-r-----. 1 root named 168 Dec 15 2009 named.loopback
drwxrwx---. 2 named named 4096 Feb 18 16:07 slaves

2. On Ubuntu:

root@ubu1010srv:~# ls -l /etc/bind
total 52
-rw-r--r-- 1 root root 601 2011-02-23 16:22 bind.keys
-rw-r--r-- 1 root root 237 2011-02-23 16:22 db.0
-rw-r--r-- 1 root root 271 2011-02-23 16:22 db.127
-rw-r--r-- 1 root root 237 2011-02-23 16:22 db.255
-rw-r--r-- 1 root root 353 2011-02-23 16:22 db.empty
-rw-r--r-- 1 root root 270 2011-02-23 16:22 db.local
-rw-r--r-- 1 root root 2994 2011-02-23 16:22 db.root
-rw-r--r-- 1 root bind 463 2011-02-23 16:22 named.conf
-rw-r--r-- 1 root bind 490 2011-02-23 16:22 named.conf.default-zones
-rw-r--r-- 1 root bind 165 2011-02-23 16:22 named.conf.local
-rw-r--r-- 1 root bind 572 2011-02-23 16:22 named.conf.options
-rw-r----- 1 bind bind 77 2011-05-15 17:52 rndc.key
-rw-r--r-- 1 root root 1317 2011-02-23 16:22 zones.rfc1918

3. Setup caching only dns server. This is normally the default setup. A caching-only
name server will look up names for you and cache them. Most tutorials will tell you
to add a forwarder, so we first try without this!

root@ubu1010srv:/var/log# nslookup
> server 192.168.1.37
Default server: 192.168.1.37
Address: 192.168.1.37#53
>
> slashdot.org
Server: 192.168.1.37
Address: 192.168.1.37#53

Non-authoritative answer:
Name: slashdot.org
Address: 216.34.181.45

Hey this seems to work without a forwarder. Using a sniffer you can find out what
really happens (since the server is not using a cache, not using your dns-server (from /
etc/resolv.conf). So where is this information coming from, and what can you learn
from sniffing this dns traffic ?

4. Explain in detail what happens when you enable a caching only dns server without
forwarder. This wireshark screenshot can help, but you learn more by sniffing the
traffic yourself! I will choose two volunteers to explain this in front of the class.

introduction to DNS

18

introduction to DNS

19

1.13. Practice: caching only with forwarder
5. Add a local dns-server as a forwarder (at my home this is 192.168.1.1, probably
different ip in a classroom!).

root@ubu1010srv:~# grep -A2 forwarder /etc/bind/named.conf.options| t\
ail -3
forwarders {
 192.168.1.1;
 };
root@ubu1010srv:~# /etc/init.d/bind9 restart
 * Stopping domain name service... bind9 [OK]
 * Starting domain name service... bind9 [OK]
root@ubu1010srv:~#

6. Explain the purpose of adding the forwarder. What is our DNS server doing when it
receives a query ? Again the wireshark screenshot can help, you should see something
similar.

root@ubu1010srv:~# nslookup
> server
Default server: 192.168.1.4
Address: 192.168.1.4#53
> server 192.168.1.37
Default server: 192.168.1.37
Address: 192.168.1.37#53
>
> cobbaut.be
Server: 192.168.1.37
Address: 192.168.1.37#53

Non-authoritative answer:
Name: cobbaut.be
Address: 88.151.243.8

7. What happens when you query for the same domain name more than once ?

introduction to DNS

20

8. Why does it say "non-authoritative answer" ? When is a dns server authoritative ?

9. You can also use dig instead of nslookup.

dig @192.168.1.37 linux-training.be

10. How can we avoid having to set the server in dig or nslookup ?

root@ubu1010srv:~# cat /etc/resolv.conf
nameserver 127.0.0.1

11. When you use dig for the first time for a domain, where is the answer coming
from ? And the second time ? How can you tell ?

introduction to DNS

21

1.14. Practice: primary authoritative server
1. Instead of only cachng the information from other servers, we will now make our
server authoritative for our own domain.

2. I choose the new TLD .paul and the domain cobbaut.paul and put the information
in /etc/bind/named.conf.local.

root@ubu1010srv:/etc/bind# grep -C1 cobbaut named.conf.local

zone "cobbaut.paul" {
 type master;
 file "/etc/bind/db.cobbaut.paul";
};

3. Also add a zone database file, similar to this one (add some A records for testing).
Set the Refresh and Retry values not too high so you can sniff this traffic (this
example makes the slave server contact the master every 300 seconds).

root@ubu1010srv:/etc/bind# cat db.cobbaut.paul
;
; BIND data file for domain cobbaut.paul
;
$TTL 604800
@ IN SOA ns.cobbaut.paul. root.cobbaut.paul. (
 20110516 ; Serial
 300 ; Refresh
 200 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS ns.cobbaut.paul.
ns IN A 192.168.1.37
ubu1010srv IN A 192.168.1.37
anya IN A 192.168.1.1
mac IN A 192.168.1.30
root@ubu1010srv:/etc/bind#

4. Restart the DNS server and check your zone in the error log.

root@ubu1010srv:/etc/bind# grep cobbaut /var/log/daemon.log
May 16 00:33:49 ubu1010srv named[25449]: zone cobbaut.paul/IN: loaded\
 serial 20110516

5. Use dig or nslookup (or even ping) to test your A records.

root@ubu1010srv:/etc/bind# ping mac.cobbaut.paul
PING mac.cobbaut.paul (192.168.1.30) 56(84) bytes of data.
64 bytes from 192.168.1.30: icmp_req=1 ttl=64 time=2.28 ms
64 bytes from 192.168.1.30: icmp_req=1 ttl=64 time=2.31 ms (DUP!)
^C
--- mac.cobbaut.paul ping statistics ---
1 packets transmitted, 1 received, +1 duplicates, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.282/2.296/2.310/0.014 ms
root@ubu1010srv:/etc/bind# dig anya.cobbaut.paul

; <<>> DiG 9.7.1-P2 <<>> anya.cobbaut.paul
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38237

introduction to DNS

22

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;anya.cobbaut.paul. IN A

;; ANSWER SECTION:
anya.cobbaut.paul. 604800 IN A 192.168.1.1

;; AUTHORITY SECTION:
cobbaut.paul. 604800 IN NS ns.cobbaut.paul.

;; ADDITIONAL SECTION:
ns.cobbaut.paul. 604800 IN A 192.168.1.37

;; Query time: 1 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon May 16 00:38:22 2011
;; MSG SIZE rcvd: 84

root@ubu1010srv:/etc/bind#

6. Our primary server appears to be up and running. Note the information here:

server os : Ubuntu 10.10
ip : 192.168.1.37
domain name: cobbaut.paul
server name: ns.cobbaut.paul

introduction to DNS

23

1.15. Practice: reverse DNS
1. We can add ip to name resolution to our dns-server using a reverse dns zone.

2. Start by adding a .arpa zone to /etc/bind/named.conf.local like this (we set notify
to no to avoid sending of notify messages to other name servers):

root@ubu1010srv:/etc/bind# grep -A4 arpa named.conf.local
zone "1.168.192.in-addr.arpa" {
 type master;
 notify no;
 file "/etc/bind/db.192";
};

3. Also create a zone database file for this reverse lookup zone.

root@ubu1010srv:/etc/bind# cat db.192
;
; BIND reverse data file for 192.168.1.0/24 network
;
$TTL 604800
@ IN SOA ns.cobbaut.paul root.cobbaut.paul. (
 20110516 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS ns.
37 IN PTR ns.cobbaut.paul.
1 IN PTR anya.cobbaut.paul.
30 IN PTR mac.cobbaut.paul.
root@ubu1010srv:/etc/bind#

4. Test with nslookup or dig:

root@ubu1010srv:/etc/bind# dig 1.168.192.in-addr.arpa AXFR

introduction to DNS

24

1.16. Practice: a DNS slave server
1. A slave server transfers zone information over the network from a master server (a
slave can also be a master). A primary server maintains zone records in its local file
system. As an exercise, and to verify the work of all students, set up a slave server
of all the master servers in the classroom.

2. Before configuring the slave server, we have to allow transfers from our zone to
this server. Remember that this is not very secure since transfers are in clear text and
limited to an ip address. This example follows our demo from above. The ip of my
slave server is 192.168.1.31, yours is probably different.

root@ubu1010srv:/etc/bind# grep -A2 cobbaut named.conf.local
zone "cobbaut.paul" {
 type master;
 file "/etc/bind/db.cobbaut.paul";
 allow-transfer { 192.168.1.31; };
};
root@ubu1010srv:/etc/bind#

3. My slave server is running Fedora 14. Bind configuration files are only a little
different. Below the addition of a slave zone to this server, note the ip address
(192.168.1.37) of my master dns server for the cobbaut.paul zone.

[root@fedora14 etc]# grep cobbaut -A2 named.conf
zone "cobbaut.paul" {
 type slave;
 file "/var/named/slaves/db.cobbaut.paul";
 masters { 192.168.1.37; };
};
[root@fedora14 etc]#

4. You might need to add the ip-address of the server on Fedora to allow queries other
than from localhost.

[root@fedora14 etc]# grep 127 named.conf
 listen-on port 53 { 127.0.0.1; 192.168.1.31; };

5. Restarting bind on the slave server should transfer the zone database file:

[root@fedora14 etc]# ls -l /var/named/slaves/
total 4
-rw-r--r--. 1 named named 387 May 16 03:23 db.cobbaut.paul
[root@fedora14 etc]#

25

Chapter 2. advanced DNS

Table of Contents
2.1. DNS round robin ... 26
2.2. DNS delegation .. 27
2.3. DNS load balancing ... 28
2.4. DNS notify ... 28
2.5. testing IXFR and AXFR .. 28
2.6. DDNS integration with DHCP .. 28
2.7. reverse is forward in-addr.arpa .. 29
2.8. ipv6 .. 29
2.9. split-horizon dns .. 29
2.10. DNS security : file corruption .. 29
2.11. DNS security : zone transfers .. 29
2.12. DNS security : zone transfers, ip spoofing .. 30
2.13. DNS security : queries ... 30
2.14. DNS security : chrooted bind .. 30
2.15. DNS security : DNSSEC ... 30
2.16. DNS security : root .. 31

advanced DNS

26

2.1. DNS round robin
When you create multiple A records for the same name, then bind will do a round
robin of the order in which the records are returned. This allows the use of DNS
as a load balancer between hosts, since clients will usually take the first ip-address
offered.

This is what it looks like in the zone configuration file.

faith IN A 192.168.1.20
faith IN A 192.168.1.22

Below a screenshot of nslookup querying a load balanced A record. Notice the order
of ip-addresses returned.

> server 192.168.1.35
Default server: 192.168.1.35
Address: 192.168.1.35#53
> faith.cobbaut.paul
Server: 192.168.1.35
Address: 192.168.1.35#53

Name: faith.cobbaut.paul
Address: 192.168.1.20
Name: faith.cobbaut.paul
Address: 192.168.1.22
> faith.cobbaut.paul
Server: 192.168.1.35
Address: 192.168.1.35#53

Name: faith.cobbaut.paul
Address: 192.168.1.22
Name: faith.cobbaut.paul
Address: 192.168.1.20
> faith.cobbaut.paul
Server: 192.168.1.35
Address: 192.168.1.35#53

Name: faith.cobbaut.paul
Address: 192.168.1.20
Name: faith.cobbaut.paul
Address: 192.168.1.22

advanced DNS

27

2.2. DNS delegation

You can delegate a child domain to another DNS server. The child domain then
becomes a new zone, with authority at the new dns server.

This is a screenshot of the zone database file with delegation.

root@ubu1010srv:/etc/bind# cat db.linux-training.be
$TTL 3d ; default ttl set to three days
$ORIGIN linux-training.be.
@ IN SOA ns1.linux-training.be. paul.linux-training.be. (
 20110524
 300
 300
 10000
 20000
)
 IN NS ns1.linux-training.be.
 IN NS ns2.linux-training.be.
 IN NS ns3.linux-training.be.
 IN MX 10 smtp.openminds.be.
ns1 IN A 192.168.1.35
ns2 IN A 192.168.1.36
ns3 IN A 192.168.1.37
www IN A 192.168.1.35
mac IN A 192.168.1.30

$ORIGIN office.linux-training.be.
@ IN NS ns4.office.linux-training.be.
; or replace those two lines with:
; office.linux-training.com IN NS ns4.office.linux-training.be

 IN NS ns1.linux-training.be. ; in case this is a slave
ns4 IN A 192.168.1.33 ; the glue record
; ns4.office.linux-training.be A 192.168.1.33 ; also ok!

advanced DNS

28

2.3. DNS load balancing

Not as above. When you have more than one DNS server authoritative for a zone, you
can spread queries amongst all server. One way to do this is by creating NS records
for all servers that participate in the load balancing of external queries.

You could also configure different name servers on internal clients.

2.4. DNS notify

The original design of DNS in rfc 1034 and rfc 1035 implemented a refresh time in
the SOA record to configure a time loop for slaves to query their master server. This
can result in a lot of useless pull requests, or in a significant lag between updates.

For this reason dns notify (rfc 1996) was designed. The server will now notify slaves
whenever there is an update. By default this feature is activated in bind.

Notify can be disabled as in this screenshot.

zone "1.168.192.in-addr.arpa" {
 type master;
 notify no;
 file "/etc/bind/db.192";
};

2.5. testing IXFR and AXFR

Full zone transfers (AXFR) are initiated when you restart the bind server, or when
you manually update the zone database file directly. With nsupdate you can update
a zone database and initiate an incremental zone transfer.

You need DDNS allowed for nsupdate to work.

root@ubu1010srv:/etc/bind# nsupdate
> server 127.0.0.1
> update add mac14.linux-training.be 86400 A 192.168.1.23
> send
update failed: REFUSED

2.6. DDNS integration with DHCP

Some organizations like to have all their client computers in DNS. This can be
cumbersome to maintain. Luckily rfc 2136 describes integration of DHCP servers
with a DNS server. Whenever DHCP acknowledges a client ip configuration, it can
notify DNS with this clients ip-address and name. This is called dynamic updates
or DDNS.

advanced DNS

29

2.7. reverse is forward in-addr.arpa

Reverse lookup is actually iomplemented as a forward lookup in the in-addr.arpa
domain. This domain has 256 child domains (from 0.in-addr.arpa to 255.in-
addr.arpa), with each child domain having again 256 child domains. And this twice
more to a structure of over four billion (2 to the power 32) domains.

2.8. ipv6

With rfc 3596 came ipv6 extensions for DNS. There is the AAAA record for ipv6
hosts on the network, and there is the ip6.int domain for reverse lookup (having
16 child domains from 0.ip6.int to f.ip6.int, each of those having again 16 child
domains...and this 16 times.

2.9. split-horizon dns

You can use the view clause in bind to give different results to different clients.

view "antwerp" {
match-clients { 172.16.42/24; }; // the network in Antwerp
zone "cobbaut.paul" {
 type master;
 file "/etc/bind/db.cobbaut.paul.antwerp"; // www=172.16.42.9
 };
};

view "brussels" {
match-clients { 172.16.33/24; }; // the Brussels network
zone "cobbaut.paul" {
 type master;
 file "/etc/bind/db.cobbaut.paul.brussels"; // www=172.16.33.4
 };
};

2.10. DNS security : file corruption

To mitigate file corruption on the zone files and the bind configuration files protect
them with Unix permissions and take regular backups.

2.11. DNS security : zone transfers

Limit zone transfers to certain ip addresses instead of to any. Nevermind that ip-
addresses can be spoofed, still use this.

advanced DNS

30

2.12. DNS security : zone transfers, ip
spoofing

You could setup DNSSEC (which is not the easiest to maintain) and with rfc
2845(tsig?) and with rfc 2930(tkey, but this is open to brute force), or you could
disable all zone transfers and use a script with ssh to copy them manually.

2.13. DNS security : queries
Allow recursion only from the local network, and iterative queries from outside only
when necessary. This can be configured on master and slave servers.

view "internal" {
match-clients { 192.168.42/24; };
recursion yes;
...

};

view "external" {
match-clients { any; };
recursion no;
...

};

Or allow only queries from the local network.

options {
 allow-query { 192.168.42.0/24; localhost; };
};

zone "cobbaut.paul" {
 allow-query { any; };
};

Or only allow recursive queries from internal clients.

options {
 allow-recursion { 192.168.42.0/24; localhost; };
};

2.14. DNS security : chrooted bind
Most Linux distributions allow an easy setup of bind in a chrooted environment.

2.15. DNS security : DNSSEC
DNSSEC uses public/private keys to secure communications, this is described in rfc's
4033, 4034 and 4035.

advanced DNS

31

2.16. DNS security : root
Do not run bind as root. Do not run any application daemon as root.

32

Index
Symbols
/etc/named.conf, 15
/etc/resolv.conf, 3

A
A (DNS record), 8
AAAA (DNS record), 8
authoritative (dns), 11
authoritative zone, 7
axfr, 13

B
bind(DNS), 26

C
cahing only name server, 9
CNAME (DNS record), 8

D
dhcp server, 3
dns, 2, 2
dns namespace, 4
dns server, 3
domain (dns), 5
domainname, 7
domain name system, 2, 2

F
forwarder (dns), 9
forward lookup query, 3
fqdn, 7
fully qualified domain name, 7

G
glue record (dns), 8

H
host (DNS record), 8
hostname, 7
hosts.txt, 2

I
iterative query, 10
ixfr, 13

M
master server (DNS), 12

MX (DNS record), 8

N
NS (DNS record), 8
nslookup, 3

P
Paul Mockapetris, 2
primary dns server, 11
primary server (DNS), 12
PTR (DNS record), 8

Q
query (dns), 3

R
recursive query, 10
reverse lookup query, 3
root(DNS), 4
root hints, 5
root server (dns), 10
root servers (dns), 4

S
secondary dns server, 11
secondary server (DNS), 12
slave server (DNS), 12
smtp, 8
soa (dns record), 11

T
tld, 6
TLD (dns), 6
top level domain, 6

Z
zone (dns), 7, 11
zone transfer (dns), 11

